Data Science Manager - Accenture
M.S. in Predictive Analytics - DePaul University
Me
Malter Analytics
GitHub
LinkedIn
YouTube Channel
Twitter
Kaggle
Other Work
General Assembly
AriBall
Media
Built In
This post will demonstrate how to use the AWS Rekognition API with R to detect faces of new images as well as to attribute emotions to a given face. In order to do this, I use the paws R package to interact with AWS. The output image will label a new, unseen image with the name of the individual as well as the emotions tied to the face for that image. A video of this tutorial can be seen here or below.
### AWS Face and Emotion recognition ###
library(paws) # used for AWS configuration
library(magick) # used for image functions
library(tidyverse)
aws_access_key_id = "################"
aws_secret_access_key = "################"
svc <- rekognition()
### Create an AWS collection (server-side containers) ###
# Create a library of faces used for determining the identity of a new photo
svc$create_collection(CollectionId = "photos-r")
#svc$delete_collection(CollectionId = "photos-r")
# photos stored in directory within folders containing the person name
# i.e. all "Danny" photos are in folder named "Danny"
# Get the list of files
path = "~/Desktop/face_detection/photos"
filenames <- list.files(path, recursive=TRUE)
# Loop through the files in the specified folder, add and index them in the collection
for(f in filenames) {
imgFile = paste(path,f,sep="/")
# Get the person name, which is embedded in the last file path folder name
imgName = unlist(strsplit(f,split="/"))[[1]]
# Add the photos and the name to the AWS collection
svc$index_faces(CollectionId="photos-r", Image=list(Bytes=imgFile), ExternalImageId=imgName, DetectionAttributes=list())
}
svc$list_faces(CollectionId = "photos-r")
### Label and identify the face of a new photo ###
# Grab a new photo with multiple faces
group_photo = "~/Desktop/face_detection/img1.JPG"
group_file_name = unlist(strsplit(group_photo,split="/"))[[4]] # used for writing out annotated file
# Read the photo using magick
img = image_read(group_photo)
# Get basic info about the photo to be used for annotation
inf = image_info(img)
# Detect the faces in the image and pull all attributes associated with faces
o = svc$detect_faces(Image=list(Bytes=group_photo), Attributes="ALL")
# Get the face details
all_faces = o$FaceDetails
length(all_faces)
### For each face in photo, draw a rectange with the name and emotions ###
new.img = img # Duplicate the original image
people_df <- NULL
for(face in all_faces) {
# Grab emotions from AWS rekognition model
emo_label = ""
for(emo in face$Emotions) {
emo_label = paste(emo_label, emo$Type, " = ", round(emo$Confidence, 2), "\n", sep="")
}
# Grab ages from AWS rekognition
age_label = ""
for(age in list(face$AgeRange)) {
age_label = paste(age_label, "AGE ESTIMATE: = ", (age$Low+age$High)/2, "\n", sep="")
}
# Grab genders from AWS rekognition
#gender_label = ""
#for(gndr in list(face$Gender)) {
# gender_label = paste(gender_label, gndr$Value, " = ", round(gndr$Confidence, 2), "\n", sep="")
#}
# Append all lists together
final_label = ""
final_label <- rbind(emo_label, age_label)
final_label <- paste(final_label, collapse = '')
# Identify the coordinates of the face. Note that AWS returns percentage values of the total image size. This is
# why the image info object above is needed
box = face$BoundingBox
image_width=inf$width
image_height=inf$height
x1 = box$Left*image_width
y1 = box$Top*image_height
x2 = x1 + box$Width*image_width
y2 = y1 + box$Height*image_height
# Create a subset image in memory that is just cropped around the focal face
img.crop = image_crop(img, paste(box$Width*image_width,"x",box$Height*image_height,"+",x1,"+",y1, sep=""))
img.crop = image_write(img.crop, path = NULL, format = "png")
# Search in a specified collection to see if we can label the identity of the face is in this crop
o = svc$search_faces_by_image(CollectionId="photos-r",Image=list(Bytes=img.crop), FaceMatchThreshold=70)
# Create a graphics device version of the larger photo that we can annotate
new.img = image_draw(new.img)
# If the face matches something in the collection, then add the name to the image
if(length(o$FaceMatches) > 0) {
faceName = o$FaceMatches[[1]]$Face$ExternalImageId
faceConfidence = round(o$FaceMatches[[1]]$Face$Confidence,3)
print(paste("Detected: ", faceName, sep=""))
# Annotate with the name of the person
text(x=x1+(box$Width*image_width)/2, y=y1-20, faceName, adj=0.5, cex=3, col="green")
}
# Draw a rectangle around the face
rect(x1,y1,x2,y2, border="red", lty="dashed", lwd=5)
# Annotate the photo with the emotions information
text(x=x1+(box$Width*image_width)/2, y=y1+50, final_label, pos=1, cex=1.5, col="red")
# Create a dataframe of individual data appended together
individual_emotion_df <- do.call(rbind.data.frame, face$Emotions)
individual_emotion_df <- individual_emotion_df %>%
spread(Type, Confidence) %>%
add_column(faceName)
individual_emotion_df$image <- strsplit(group_file_name, ".JPG")
individual_emotion_df <- individual_emotion_df%>%
select(faceName, image, everything()) # move faceName to beginning
individual_age_df <- data.frame(face$AgeRange)
colnames(individual_age_df) <- c("age_low", "age_high")
individual_df <- cbind(individual_emotion_df, individual_age_df)
people_df <- rbind(individual_df, people_df)
}
dev.off()
people_df$age_est <- (people_df$age_low + people_df$age_high)/2
names(people_df) <- tolower(names(people_df))
head(people_df)
# Write the image out to file
image_write(new.img, path=paste0("~/Desktop/face_detection/annotated/annotated_", group_file_name))
Example table if you want to output the data above into a dataframe.
| faceName | image | angry | calm | confused | disgusted | fear | happy | sad | surprised |
|----------|-------|------------|-------------|------------|-------------|-------------|----------|-------------|------------|
| Natalie | img1 | 0.05724448 | 0.008161878 | 0.08076324 | 0.054936308 | 0.048346419 | 99.64977 | 0.037308376 | 0.06347576 |
| Danny | img1 | 0.01850546 | 0.008797654 | 0.01369155 | 0.005110143 | 0.009048435 | 99.88663 | 0.003529715 | 0.05468611 |
comments powered by Disqus